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A secure quantum key distribution scheme based on
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The security of the quantum secret key plays a critical role in quantum communications. Thus far, one
problem that still exists in existing protocols is the leakage of the length of the secret key. In this letter,
based on variable quantum encoding algorithms, we propose a secure quantum key distribution scheme,
which can overcome the security problem involving the leakage of the secret key. Security analysis shows
that the proposed scheme is both secure and effective.
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In 1969, Wiesner from Columbia University raised, for
the first time, that information can be kept secret due
to characteristics of quantum mechanics; in 1984, this
principle was put into practice[1]. The protocol BB84
was presented as the first quantum key distribution pro-
tocol in the whole world. Since then, some protocols
based on the characteristics of quantum mechanics have
appeared, such as quantum secure direct communication
(QSDC)[2−11], quantum signature (QS)[12], quantum key
distribution (QKD)[13−19], quantum identification au-
thentication (QIA)[20−22], and so on.

As one of the earliest areas in the research of quantum
information, quantum key distribution has already been
taken as a solid step forward. At present, apart from the
protocol BB84, the main key distribution protocols in-
clude protocols B92, E91, and SARG04, to name a few.
With these protocols, legal users are able to discover an
attacker Eve in time while it is in the process of intercept-
ing, measuring, or retransferring particles in the quantum
channel. Therefore, these protocols are reliable concern-
ing the security of communication. However, if Eve does
nothing but collect particles during the course of data
transmission, the attacker can obtain information on how
many particle communicators have transferred, through
which Eve can acquire N , the length of secret key. More-
over, Eve can speculate any bit at random with an accu-
racy rate of 0.5N . Most people think that the security of
secret key is high enough during the transmission even
if the length of secret key is leaked. This assumption is
based on the characteristics of quantum mechanics (e.g.,
quantum no-cloning theorem, Einstein-podolsky-Rosen
(EPR) entanglement, and so on[1,18,19]). However, if the
length of the secret key is not long enough, it is easy for
the key to be cracked by an attacker. Moreover, with the
improvement and application of quantum computing, the
security of the secret key length plays an important role
for a deciphering message. For example, in the encryp-
tion algorithm, which depends on the complexity of the
prime factorization of large number, the complexity of
deciphering for an L-bit large number will fall to o(L3)
from o(2

1
2 L) on a quantum computer[23].

In this letter, putting the security performance into

consideration for a secure quantum communication, a
new scheme of quantum key distribution is proposed in
order to overcome the defect mentioned above. In the
new scheme, two communicators should firstly transfer a
particle sequence with N bits, where every particle ran-
domly stands for one of the four coding solutions (i.e., one
bit, two bits, three bits, or four bits). Secondly, the two
communicators send another particle sequence to explain
the coding rule of particles. Finally, the receiver will de-
code the first sequence according to the second sequence.

Prior to discussing our scheme, we denote |0〉 and |1〉
as the up and down eigenstates of σz, and then denote
|+〉 = (|0〉 + |1〉)

/√
2 and |−〉 = (|0〉 − |1〉)

/√
2 as the up

and down eigenstates of σx. Then, we can also define
four Bell states as follows:

ψ+
12 = (|10〉12+ |01〉12)/

√
2 = (| + +〉12−|− −〉12)/

√
2, (1)

ψ−
12 = (|10〉12− |01〉12)/

√
2 = (| − +〉12−|+ −〉12)/

√
2, (2)

ψ+
12 = (|00〉12+ |11〉12)/

√
2 = (| + +〉12− |−−〉12)/

√
2, (3)

ψ−
12 = (|00〉12− |11〉12)/

√
2 = (| + −〉12−|− +〉12)/

√
2, (4)

where the subscripts 1 and 2 denote the two correlated
particles in an EPR pair.

Suppose Alice and Bob try to connect to each other
secretly. At the beginning, Alice wants to send K, the
secret key of M bits, to Bob. They should comply with
the following steps to complete the secure transmission
of the secret key.

Step 1: Alice encodes the secret key K first. The
information of 0, 01, 010, and 0110 in the secret key K
is encoded into |0〉 randomly, and that of 1, 10, 101 and
1001 is encoded into |1〉 randomly. Then, the sequence R
with N qubits (N ≤ M) is produced at the side of Alice,
and R = (|r1〉 , |r2〉 , · · · , |rN 〉).

Step 2: Alice randomly creates ξ particles |+〉 or |−〉
and inserts them into the sequence R randomly such that
a new sequence R with the length of N + ξ is formed.
Then, Alice sends the new sequence R to Bob. Once
Bob receives the sequence of particles, Alice publicly
announces the particles’ positions at the sequence R. Af-
terwards, Bob should test whether or not these particles

1671-7694/2011/032702(3) c© 2011 Chinese Optics Letters



032702-2 CHINESE OPTICS LETTERS / Vol. 9, No. 3 / March 10, 2011

are |+〉 or |−〉. If they are not, it can be said that the
sequence has been damaged by attacker Eve or other fac-
tors, and Alice and Bob should stop the communication;
if they are, they should move to the next step.

Step 3: Bob prepares a sequence of 2N + 2δ EPR
pairs, denoted as A-sequence, in such a way that all
the EPR pairs in odd orders are in the same state
φ+, and all the EPR pairs in even orders are in the
state ψ, which has been randomly selected from one
of the four Bell states {ψ+, ψ−, φ+, φ−}. We de-
note the 2N + 2δ EPR pairs in the A-sequence as{(

a1
1, a

1
2

)
,
(
a2
1, a

2
2

)
, · · · , (an

1 , an
2 ) , · · · ,

(
a2N+2δ
1 , a2N+2δ

2

)}
,

where the superscripts 1, 2, 3,· · · , i, · · · , 2N+2δ indicate
the order of each EPR pair in the sequence, and the sub-
scripts 1 and 2 represent the different particles of each
EPR pair, respectively. Alice then takes the first particle
from each EPR pair in the A-sequence to form a particle
sequence

{
a1
1, a

2
1, · · · , an

1 , · · · , a2N+2δ
1

}
, denoted as A1-

sequence. The remaining partner particles compose of
another particle sequence

{
a1
2, a

2
2, · · · , an

2 , · · · , a2N+2δ
2

}
,

denoted as A2-sequence. Bob sends the A1-sequence to
Alice and keeps the A2-sequence with him. After receiv-
ing the A1-sequence, Alice publicly confirms that she has
received the A2-sequence.

Step 4: In order to check the security of the quantum
channel between Bob and Alice, they carry out the fol-
lowing procedures to ensure that the A1-sequence has
not been eavesdropped on during the transmission.

1) Bob randomly selects δ pairs of adjacent particles
in the A2-sequence and tells Alice the positions of the
selected particles through the classical channel.

2) Hereafter, Bob performs single photon measurement
on each of the selected particles with σz basis or σx basis
at random. He then informs Alice of his measurement
bases and the results he obtained using these.

3) Alice performs single photon measurement on the
partner particles of EPR pairs in the A1-sequence with
the same measuring basis as Bob. She then compares
the measurement results with those of Bob.

According to the procedure described above, the mea-
surement results of Bob and Alice should be completely
the same if there are no eavesdroppers in the quantum
channel. Consequently, with the comparison of the mea-
surement results, Alice can evaluate the error rate of
the transmission of the A1-sequence. If the error rate
exceeds the threshold, they should terminate the scheme
immediately; otherwise, they can continue to the next
step.

Step 5: Alice performs unitary operations to particles
of even numbers in the A1-sequence according to her way
of coding presented in Step 1 expressed as

0 or 1 → U00 = |0〉 〈0| + |1〉 〈1| , (5)

01 or 10 → U01 = |0〉 〈1| + |1〉 〈0| , (6)

010 or 101 → U10 = |0〉 〈1| − |1〉 〈0| , (7)

0110 or 1001 → U11 = |0〉 〈0| − |1〉 〈1| . (8)

After these operations, the A1-sequence is transformed
into

{
a1
1, U

1
Aa2

1, · · · , a2i−1
1 , U i

Aa2i
1 , · · · , a2N−1

1 , UN
A a2N

1

}
,

i ∈ {1, 2, · · · , N}. Thus the created EPR pairs by Bob

Table 1. Process of Recovering (φ+
AB,U i

AψAB)
According to (|A〉13 , |B〉24)

(φ+
12, U

i
Aψ34) (|A〉13 , |B〉24)

(φ+
12, φ

+
34) (φ+

13, φ
+
24), (φ

−
13, φ

−
24), (ψ

+
13, ψ

+
24), (ψ

−
13, ψ

−
24)

(φ+
12, φ

−
34) (φ+

13, φ
24
24), (φ

−
13, φ

−
24), (ψ

+
13, ψ

−
24), (ψ

−
13, ψ

+
24)

(φ+
12, ψ

+
34) (φ+

13, ψ
+
24), (φ

−
13, ψ

−
24), (ψ

+
13, φ

+
24), (ψ

−
13, φ

−
24)

(φ+
12, ψ

−
34) (φ+

13, ψ
−
24), (φ

−
13, ψ

+
24), (ψ

+
13, φ

−
24), (ψ

−
13, φ

+
24)

turns into
{
φ+

AB, U1
AψAB, φ+

AB, U2
AψAB, · · · , φ+

AB, UN
A ψAB

}
.

Step 6: Alice performs a Bell-basis measurement (BM)
on the particles

(
a2i−1
1 , U i

Aa2i
1

)
, and publishes the mea-

surement outcomes using the classical channel. Bob then
performs a BM on the particles

(
a2i−1
2 , a2i

2

)
. According

to the initial states of each EPR pair and Alice’s BM
outcomes, Bob can recover (φ+

AB, U i
AψAB) as presented

in Table 1. Now Bob knows the state of U i
Aψ and the

initial state of ψ; thus, he can deduce U i
A.

Step 7: After obtaining U1
A, U2

A, · · · , UN
A , Bob is now

able to decode R = (|r1〉 , |r2〉 , · · · , |rN 〉) on the basis of
encoding rules, where the decoding result is denoted by
K ′. In order to ensure that K ′ is the same as the secret
key Alice wants Bob to obtain, Bob then randomly se-
lects θ-bit classical information from K ′, and encodes 0
and 1 into |0〉 or |−〉 randomly and |1〉 or |+〉 randomly,
respectively. Therefore, a θ-qubit sequence T is formed,
after which Bob sends it to Alice.

Step 8: After Alice receives T , Bob tells her the par-
ticles’ positions in K ′ and the measuring bases used
to measure these. Alice then performs single photon
measurement on these and transforms her measurement
results into classical information (where |0〉 and |−〉 are
denoted by 0, |1〉 and |+〉 are denoted by 1). She then
compares the transformed results with those bits in the
same position of the secret key K. If they are the same,
we may consider K ′ = K, that is, Bob has already ob-
tained K.

Security performance is very important for a quantum
key distribution scheme. Accordingly, the security of our
protocol is now analyzed.

Firstly, in Step 2, an attacker Eve adopts the
measurement-and-retransmission strategy: Eve measures
the sequence R and creates a new sequence according to
the measurement result. Then, Eve transfers it to Bob;
because Eve has no idea where |+〉 or |−〉 has been in-
serted in R, Bob is able to find whether or not R is
substituted in time. If Eve does nothing but listen, she
can only obtain the length of the sequence with inserted
trap bits.

Secondly, in Step 3, Eve can attack A1-sequence. In
the first instance, suppose Eve attempts to utilize the
intercept-and-resend the strategy to attack A1-sequence.
In this case, Eve intercepts the qubits in the A1-sequence
and resends qubits as prepared by herself instead. Given
that this attack method can destroy the entanglement
correlation of the EPR pairs, the two legal users are able
to detect the existence of Eve as long as they start the
procedure of eavesdropping detection. Moreover, Eve
adopts the measure-and-resend scheme to launch an at-
tack. In this scenario, because Eve does not know the
measurement basis of each qubit, her measurement on
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the qubits would lead to an increase of the error rate of
data transmission; in turn, the increase of the error rate
also can reveals the existence of Eve.

Finally, in Step 6, Alice publishes her measurement
result, i.e., |A〉13, which Eve can also obtain; however,
Eve cannot recover the message (φ+

AB, U i
AψAB) just by

using |A〉13. Now Eve cannot know the state of U i
AψAB

and ψAB, leading to the inability to obtain the exact
information about U i

A. Supposing Eve obtains the state
of |A〉13, because she has no idea of |B〉24, only she can
guess U i

AψAB correct with the probability of 25%. In
addition, in order to get U i

A, Eve has to guess ψAB (also
the correct probability is 25%). In other words, the
probability of Eve obtaining correct U i

AψAB and ψAB

simultaneously is 25% × 25% = 6.25%. Taking the pos-
sibility that Eve can obtain the correct U i

A although she
guesses U i

AψAB and ψAB wrongly into consideration, the
probability that Eve can obtain the correct U i

A is no
more than 25%.

In summary, in the protocol, the attacker Eve is only
able to obtain the length of the sequence R without trap
bits. At the same time, Eve can guess U i

A at the proba-
bility of no more than 25%.

Thus, if Alice encodes the secret key of M bits to the
particle sequence R of N qubits, Eve can only conclude
that the length of K is between N and 4N bits. Ac-
cordingly, the probability that Eve is able to guess K
correctly is expressed by:

0.5M

4N − N + 1
=

0.5M

3N + 1
. (9)

Therefore, it is more secure compared with other pro-
tocols. For example, if encoding 1-, 2-, 3-, and 4-bit
classical information into a qubit with equal probability,
we can obtain an equation as N = 0.4M , where M is the
length of classical information and N is the length of the
encoded quantum information. Given the encoding rule,
the numbers of 1-, 2-, 3-, and 4-bit classical information
are equal to 0.25N , respectively. As such, we can obtain
the equation as 0.25N × 1 + 0.25N × 2 + 0.25N × 3
+ 0.25 N × 4 = M . In other words, N = 0.4M . In this
situation, the probability that Eve can obtain a correct
K is given by

0.5M

3N + 1
=

0.5M

1.2M+1
. (10)

Obviously, the probability value is less than that of other
protocols, where the value is 0.5M . In this sense, security
performance is much better.

In addition, we discuss the channel efficiency in this
letter. Supposing that the condition is the same as the
above example, if ξ, δ ¿N , the efficiency should be ex-
pressed as

2.5N

(N + ξ) + ξ + (2N + 2δ) + δ + N
≈ 2.5N

4N
= 62.5%,

(11)

which is higher than the efficiencies of protocols BB84
(50%)[1], B92 (25%)[18], and E91 (22.5%)[19].

In conclusion, introducing variable quantum encoding
algorithms, a secure quantum key distribution scheme is
proposed in this letter. According to the encoding rule,
Alice encodes the secret key K into sequence R ran-
domly, after which Alice transfers R to Bob, along with
another sequence describing the decoding rule. Finally
Bob decodes the sequence R according to the decoding
rule. This scheme can guarantee the security of informa-
tion and prevent the length of the secret key from being
leaked. Therefore, it is more secure and effective than
other existing protocols.
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